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1 Introduction

Implicit functions connecting two (or more) different variables are frequently encountered in
mathematical modeling of different physical systems. Examples include the magnetization hys-
teresis curve B−H, memory behaviour of memristors, the self-consistent charge transport in
materials under electron beam irradiation, the steady state behaviour of a nonlinear microme-
chanical resonator, and a wide range of other self-consistent problems and nonlinear processes.

An implicit functional relation can be written as

f (x,y) = 0, (1)

where x and y are some model variables. Here, we will assume that y is externally controlled
(e.g., excitation force, input voltage, etc.), while x is the "slave" variable, whose value is deter-
mined by Eq. (1). If this equation can be rearranged as

x = g(y),

the task of determining x becomes trivial. However, in many cases, the transition f → g is not
possible (e.g., f is a polynomial function of fifth order or higher) or not practical (e.g., f is a
cubic or quartic polynomial function). Moreover, Eq. (1) may have several solutions for the
given value of the independent variable, and the specific solution realized in the system depends
on the history of its evolution.

When trying to simulate such systems, the go-to solution usually includes some sort of an
advanced numerical analysis software, such as Matlab, or a full-blown multiphysics simulator,
such as COMSOL. Although these tools are well suited for the task, the integration of their
results with SPICE simulations can be complicated, and the flexibility of parameter tuning, and
exploring different what-if scenarios and circuit topologies in a SPICE simulator is hindered
significantly.

Here, we show a simple way to solve equations similar to Eq. (1) directly in SPICE time
domain simulations.
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2 Using feedback to solve implicit equation

The idea of solving an implicit equation by using a high gain feedback loop dates back to the
days of analogue computers. Consider the feedback loop shown in Fig. 1. At a steady state, the

Figure 1: Feedback loop for approximate solution of an implicit equation f (x,y) = 0 [see
Eq. (1)], where y is the independent variable, and x is the dependent variable.

following relation is maintained:

f (x,y) =
x
A

|A|≫x−−−→ 0, (2)

where A is the gain of the amplifier in Fig. 1. Thus, the output x is an approximate solution of
Eq. (1).

The subset of solutions of Eq. (1) that can be found by the system shown in Fig. 1 depends
on the sign of the amplifier gain A. In an example shown in Fig. 2, the system will converge
to x ≈ x3 for positive A, and to x ≈ x2 for negative A. In other words, the solutions x ≈ x1 and
x ≈ x3 are stable for A > 0, while the solution x ≈ x2 is not stable. The opposite is correct for
the case A < 0. Therefore, it is possible to ensure convergence to physically stable solutions by
the correct choice of the sign of the feedback gain.

The steady state error in x can be estimated as∣∣∣∣δxi

xi

∣∣∣∣≈ 1∣∣∣A ∂ f (xi,y)
∂x

∣∣∣ , (3)

where δxi is the difference between the true solution xi and the system’s output x. In the impor-
tant case in which ∂ f (xi,y)/∂x = 0, which usually corresponds to a loss of a stable solution due
to a saddle-node bifurcation (see the example in the next Section), the steady state error can be
shown to be ∣∣∣∣δxi

xi

∣∣∣∣≈
√√√√ 2∣∣∣Axi

∂ 2 f (xi,y)
∂x2

∣∣∣ . (4)
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Figure 2: The impact of the sign of the amplifier gain A on the specific solution to which the
system shown in Fig. 1 converges. Possible solutions of Eq. (1) are denoted xi. The initial
condition is denoted by a blue diamond and a vertical dashed line. The red (green) arrow shows
the direction to the closest solution to which the system will converge for A > 0 (A < 0), i.e., x3
(x2).

It follows from the above discussion that large values of the gain A are required to achieve
reasonable accuracy of the solutions. However, due to the discreet nature of the time domain
SPICE simulations, excessively large gain can cause the system to skip a solution, or can result
in simulator convergence issues. As usual, a trade-off exists, in this case between the accuracy
and the response time of the system, set by the low pass RC output filter (see Fig. 1). Assuming
that the simulation time step δ t is much smaller than the filter time constant RC, the change in
the output signal δx can be estimated as

δx = (A f − x)
δ t
RC

. (5)

If the system output is sufficiently far from the solution, i.e., A f ≫ x, the following approximate
condition can be formulated for the maximum allowable time step size:

δ t <
∆x

Amax | f |
RC, (6)

where ∆x is the distance between two successive solutions, and max | f | is the maximum value of
f (x,y) in the interval between these solutions. Fortunately, such small steps are usually required
only during the initial settling down period (or following large changes in y). The majority of
modern simulators use a variable time step size, allowing accurate convergence to the steady
state without significant penalty to the total simulation time and the number of points.

Finally, it must be emphasized that in order to maintain a reliable solution at all times, the
output RC filter should be fast enough to follow the variation of f (x,y) due to the changes of the
independent variable y.
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3 Example: static pull-in in MEMS

An interesting example that requires a continuing solution of an equation similar to Eq. (1)
comes from the field of microelectromechanical systems (MEMS). Consider a simple MEMS
capacitor shown in Fig. 3. This model can describe a wide range of electrostatically actuated

Figure 3: MEMS parallel plates capacitor. The left plate is suspended on a micromechanical
spring with a spring coefficient k, and its displacement is denoted z. The right plate is static and
grounded. The capacitance between the plates is C(z) =C(z = 0)/(1− z/d). A constant voltage
V is applied between the plates.

devices, including comb drives, RF MEMS varactors and switches, etc.
Here, we assume that the micromechanical system is over-damped, and, in addition, that the

changes in the actuating voltage V are slow, i.e., the system is quasi-static. The position of the
suspended capacitor plate is determined by the equilibrium between the mechanical elastic force
−kz and the electrostatic attractive force V 2C0/2d(1− z/d)2, where C0 = C(z = 0). It follows
that the position of the plate, z, is a solution of the following equation:

x− V 2C0

2kd2(1− x)2 = 0, (7)

K =
C0

2kd2 , (8)

where we have defined an non-dimensional displacement x = z/d for convenience.
In general, Eq. (7) is a cubic equation and, therefore, has three solutions. Analytical expres-

sions exist for these solutions, but they are extremely cumbersome, and do not provide the user
with any insight about the system’s stability. It is, therefore, more practical to solve this equation
using the feedback technique described above, especially if controlling and driving electronics
is simulated as well.

One of the solutions of Eq. (7) is always real but larger than 1 (z > d), i.e., it is not physical.
A real physical solution exists only for voltages below some critical value Vpi, at which the
displacement reaches its maximum stable value x = 1

3 . Increasing the voltage further will result
in a loss of mechanical stability, and the suspended capacitor plate will snap toward the static
plate. This phenomenon is known as pull-in, and can be quite destructive and even irreversible
in various MEMS devices.
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The simulation circuit is presented in Fig. 4, where a behavioural source B is employed to
calculate the left side of Eq. (7) and to provide the gain A. The following typical values are used
for different parameters: d = 10µm, C0 = 200fF, k = 1N/m, and the gain is A =−1×105.

V

PWL(0 0 20m 20)

R
1Ohm

C

10nF

V={A}*(V(x)*(1-V(x))**2-{K}*V(in)**2)

B

x

in

.tran 0 20m 0

.ic V(x)=0.param A=-1e5
.param K=1e-3

cuments\Business\SPICE\LTspice\Circuits_for_articles\arbitrary_func_solution_by_feedback\arb_fu

Figure 4: A simulation circuit designed to solve the equation x(1− x)2 −KV 2 = 0, where K =
C0/2kd2 [see Eq. (7)]. The parameter values are: d = 10µm, C0 = 200fF, k = 1N/m, K =
1× 10−31/V2, and the gain A = −1× 105. The output RC filter time constant is 10ns. The
excitation voltage Vin is swept from 0V to 20V at a rate of 1V/ms.

The system is expected to lose stability at x = 1
3 , at which point

Vpi =
2
3

√
1

3K
, (9)

Using the parameter values given above, the expected pull-in voltage is Vpi = 12.17V. In the
simulation, the excitation voltage Vin is swept from 0V to 20V at a rate of 1V/ms.

The results are shown in Fig. 5. As expected, three real solutions exists, two of them physi-
cal. The lowest one is stable and is followed by the system starting from zero excitation voltage.
The middle one is unstable and is located on the separatrix, i.e., for any initial conditions above
this solution, the system will undergo a pull-in, even if a stable lower solution exists. When the
excitation voltage exceeds the critical value Vpi, these two physical solutions are eliminated in a
saddle-node bifurcation, and only the third (upper) stable solution remains. This solution is not
physical, because x > 1, and is shown here for completeness. In a real simulation, the output of
the system would be limited to 0 ≤ x ≤ 1.

It remains to show that the worst case error estimation given in Eq. (4) is valid. Indeed, a
quick calculation shows that at the bifurcation point (Vin = Vpi, x = 1

3 ), the estimated relative
error is |δx/x| ≈ 5× 10−3, while comparison of the exact solution with the simulation results
gives |δx/x| ≈ 1×10−3.

4 Summary

Using a simple feedback topology, it is possible to solve implicit equations directly in SPICE
simulators during time domain simulations. This approach allows the engineer to simulate a
variety of complex physical models directly in SPICE, models that may otherwise require spe-
cialized numerical software and laborious post-simulation integration of the results. In the ex-
ample discussed here, the micromechanical pull-in effect is simulated with very high accuracy.
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Figure 5: Comparison of the simulation results (black dotted line) with exact solutions of Eq. (7)
(solid lines). Three real solutions exist. For low excitation voltages Vin < Vpi = 12.17V, the
simulated solution coincides with the stable physical solution (red solid line). Above the pull-
in voltage, the simulated solution jumps to the second stable solution (blue solid line). This
solution is not physical. The remaining, unstable solution is denoted by a green solid line. In the
inset, the actual time trace from the SPICE simulation (see Fig. 4) is shown.

It is shown, however, that a good understanding of the underlying model is needed, and careful
choice of simulation parameters based on preliminary analytical analysis is required to ensure
that the simulated system converges to a physical and stable solution if one exists, and deals
correctly with cases in which such solution is not present.

All circuits and simulations presented in this paper were created using the LTspice IV simu-
lator developed by Linear Technology Corporation.
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